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Abstract—Enhancing diversity in ranking on graphs has been identified as an important retrieval and mining task. Nevertheless, many

existing diversified ranking algorithms either cannot be scalable to large graphs due to the time or memory requirements, or lack an

intuitive and reasonable diversified ranking measure. In this paper, we propose a new diversified ranking measure on large graphs,

which captures both relevance and diversity, and formulate the diversified ranking problem as a submodular set function maximization

problem. Based on the submodularity of the proposed measure, we develop an efficient greedy algorithm with linear time and space

complexity w.r.t. the size of the graph to achieve near-optimal diversified ranking. In addition, we present a generalized diversified

ranking measure and give a near-optimal randomized greedy algorithm with linear time and space complexity for optimizing it. We

evaluate the proposed methods through extensive experiments on five real data sets. The experimental results demonstrate the

effectiveness and efficiency of the proposed algorithms.

Index Terms—Diversified ranking, graph algorithms, scalability, Flajolet-Martin sketch, submodular function
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1 INTRODUCTION

RANKING nodes on graphs is a fundamental task in
information retrieval, data mining, and social network

analysis. It has a large number of applications such as
ranking webpages [1], measuring centrality in social net-
works [2], as well as enhancing personalized services for
web search [3]. Most of existing graph-based ranking
algorithms are based on the stationary distribution of the
random walk on graphs, such as the PageRank algorithm
[1] and its variants [3], [4]. The idea of this random-walk-
based ranking algorithms is that the node of a graph should
be ranked higher if there are more high-ranking nodes link
to it. This basic idea has become a crucial criteria for
designing ranking algorithms on graphs and also has been
successfully applied in many applications.

However, as discussed in [5] and [6], the design criteria
lead to many nodes found in the top-K ranking list are
similar because it only considers the relevance of the nodes.
It reduces the ranking effectiveness when the applications
need to incorporate diversity into the top-K ranking results.
Take Flickr (http://www.flickr.com), which is a well-
known photo shared website, as an example. Users in Flickr
can make friends and join in many interest groups. Consider
a retrieval task of finding the top-K relevant users who are
similar to a given user but are from as many interest groups
as possible in the Flickr social network. In general, we can
use personalized PageRank algorithms [1], [3], [4] to rank
the users, and then find the top-K users based on their
personalized PageRank scores. However, the top-K users
found by the personalized PageRank typically include many
users who are in the same interests group, thereby they

cannot meet our objective of diversity. To this end, we need
to take the diversity of the top-K ranking list into account for
designing ranking algorithms. In other words, the ranking
algorithms in this case should produce diversified ranking
results so as to cover as many groups as possible.

Recently, improving diversity in top-K ranking results
has attracted much attention as it has a variety of
applications in information retrieval and data mining areas.
There exists a large body of work on search results
diversification both in text and graph data sets, respectively.
In this paper, we focus on enhancing diversity in ranking on
graph data sets. We are interested in finding the top-K
nodes that are not only relevant to the query but also
dissimilar to one another. Here, the relevance of the nodes
is measured by their personalized PageRank scores.

In the literature, there are four frameworks for diversi-
fied ranking on graphs. The first one is based on a greedy
vertex selection procedure [5], [7], the second one is based
on a so-called vertex reinforced random walk [6], the third
framework is based on optimizing the predefined diversi-
fied measures [8], [9], and the last one is based on the
resistive graph centers [10]. In particular, the greedy vertex
selection procedure chooses a vertex with a maximum
random-walk-based ranking score at a time, and then
removes the selected vertex from the graph. To get the
top-K ranking list, this process repeats K times. To the best
of our knowledge, there are two algorithms based on this
framework: the Grasshopper algorithm [5] and the manifold
rank with stop points algorithm [7]. Both algorithms have
empirically shown that they can improve diversity in
ranking on graph data. However, the major drawback of
this type of algorithms is that they have cubic time
complexity, thus they cannot be scalable to large graphs.
Another drawback of this type of algorithms is that they
lack a theoretical explanation for the algorithms why they
can improve diversity in ranking results. Some improve-
ments of this point have been achieved in the second
framework [6]. In [6], Mei et al. propose a diversified
ranking algorithm, called DivRank, based on a vertex
reinforced random walk, and present an optimization
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explanation for DivRank to improve diversity in ranking.
However, the explanation is only suitable for undirected
graphs. In addition, the convergence property of DivRank is
not clear, because it resorts to some approximation
strategies to the original vertex reinforced random walks.
Another drawback of DivRank is that it cannot be scalable
to large graphs for two reasons. On one hand, DivRank
dynamically updates the transition matrix at each iteration.
This procedure may result in a full transition matrix, thus it
cannot be stored in main memory if the graph is very large.
On the other hand, the full transition matrix increases the
computational cost for the matrix-vector multiplication.
Tong et al. [8] propose a scalable diversified ranking
algorithm by optimizing a predefined diversified ranking
measure. However, the motivation of their diversified
ranking measure is not explicitly clarified. Specifically, for
measuring diversity, their measure is based on a multi-
plication of the so-called “Google matrix” and the persona-
lized PageRank vector, which lacks a clear topological
explanation. Hence, it does not directly reflect diversity of a
set of nodes from graph structural perspective. The last
notable diversified ranking algorithm is based on resistive
graph centers [10]. Similar to the greedy vertex selection
algorithms, the time complexity of this algorithm is cubic,
thus it cannot scale to large graphs.

To overcome the problems in the existing algorithms, in
this paper, we present a novel diversified ranking method
on graphs. The basic idea of our approach is that we first
calculate the personalized PageRank vector on the basis of
the query node, and then perform a carefully designed
vertex selection algorithm to find the top-K diversified
ranking list according to a predefined diversified ranking
measure. The key challenges in our method are 1) how to
define an intuitive and reasonable diversified ranking
measure that captures both relevance and diversity, and
2) how to develop an efficient vertex selection algorithm to
optimize the diversified ranking measure. To this end, first,
we propose a modified definition of expansion on graph to
capture the diversity of the nodes. The key intuition is that
if the nodes have large expansion, then the nodes will be
dissimilar to each other, thus leading to diversity. Second,
based on this definition, we propose a novel diversified
ranking measure by combining relevance and diversity. We
show that the proposed measure is a nondecreasing
submodular set function. Based on the submodularity of
the proposed measure, we design an efficient greedy
algorithm with linear time and space complexity w.r.t. the
size of the graph to find the top-K diversified ranking list.
Third, we further present a generalized diversified ranking
measure based on the definition of k-step expansion, and
propose a randomized greedy algorithm with linear time
and space complexity to optimize it accurately. Finally, we
compare our proposed methods with six existing algo-
rithms on five real networks. The experimental results
demonstrate the effectiveness, efficiency, and scalability of
the proposed algorithms. The preliminary study of this
work is reported in [9].

The remainder of this paper is organized as follows: We
give a briefly review of personalized PageRank algorithm
and present our new diversified ranking measure as well as

our problem formulation in Section 2. We show the
submodularity of the proposed measure and give a near-
optimal greedy algorithm for finding top-K diversified
ranking in Section 3. We present a generalized diversified
ranking measure and a randomized greedy algorithm in
Section 4. Extensive experiments are reported in Section 5,
and related work is discussed in Section 6. We conclude this
work in Section 7.

2 PRELIMINARIES

In this section, we first briefly review the personalized
PageRank algorithm that is used as a basic measure of
relevance in diversified ranking on graphs. Then, we
propose a new diversified ranking measure and formulate
our diversified ranking problem as a discrete optimization
problem.

2.1 Personalized PageRank Algorithm

Personalized PageRank [1], [3], [4] is a well-known
approach for query-dependent ranking on graphs, and it
has been successfully used in various applications in
the past decades. We briefly describe the personalized
PageRank algorithm below.

Given a query vector r (also call teleport vector in many
literature [10]), and a graph G. Then, the personalized
PageRank vector w can be calculated by the following
iterative equation:

w ¼ ð1� �Þrþ �ATw; ð1Þ

where � is a damping factor, and A is the adjacency matrix
of graph G. The iterative equation in (1) can converge to a
fixed point, which corresponds to the stationary distribu-
tion of the Markov chain. The resulting vector w will be
utilized to rank the nodes of the graph.

However, the personalized PageRank does not consider
diversity of the ranking results. This is because the
personalized PageRank makes use of the stationary dis-
tribution of the random walks for ranking nodes in graph.
The random walk on graph can form a Markov chain. By
the fundamental theorem of Markov chain [11], the
stationary distribution of the walks is inversely propor-
tional to the hitting time. If a node is hit very frequently by
random walks, then the node will have a high personalized
PageRank score. Also, if a node is hit frequently, all its
neighbors are most likely to be hit frequently, thus its
neighbors also get high personalized PageRank scores.
Obviously, this process spreads to many adjacent nodes in
the top-K ranking results. In other words, the top-K ranking
list found by the personalized PageRank may contain many
similar nodes, which reduces the ranking effectiveness in
the applications that need to incorporate diversity.

2.2 Problem Formulation

In the literature, there are many ranking algorithms on
graphs [5], [6], [7] that aim at improving diversity. However,
as our analysis given in the introduction, the existing
diversified ranking algorithms either cannot scale to large-
scale graphs or lack an intuitive and reasonable diversified
ranking measure. To this end, in this paper, we propose a
new diversified ranking measure on graphs and design a
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scalable algorithm for optimizing it accurately. Below, we
first give some important notations and definitions, and
then formulate our diversified ranking problem.

Notations and definitions. Consider a graph G ¼ ðV ;EÞ,
with a set of nodes V and a set of edges E, where the size of
nodes is n ¼ jV j.
Definition 2.1. Let S be a set of nodes. The expanded set of S is

denoted by NðSÞ such that NðSÞ ¼ S [ fv 2 ðV � SÞj 9u 2
S; ðu; vÞ 2 Eg. The expansion of a set of nodes, S, is the size
of the expanded set, NðSÞ, denoted as jNðSÞj. And the
expansion ratio is defined as � ¼ jNðSÞj=n.

It is worth mentioning that our definition of expansion is
based on the topological structure of the graph. which can
be either undirected or directed. In addition, it is important
to note that our definition of expansion is different from the
definition of expansion given in the expander graph [12]
where the expansion of a graph equals to the minimum
expansion ratio among all the expanded sets.

With Definition 2.1, a set of nodes with a large expansion
ratio implies that the nodes are dissimilar to one another.
Here, the intuition behind is that two nodes are dissimilar if
they do not share the common neighbors in a graph. The
larger expansion ratio the set of nodes has, the better
diversity among the set of nodes they can achieve. Consider
a graph in Fig. 1a. Assume we select three nodes (red
nodes) in Figs. 1b and 1c, respectively. Then, the expansion
ratio of the selected nodes in Figs. 1b and 1c are 0.6 and 0.9,
respectively. The selected nodes in Fig. 1b are well
connected, thus they can be similar to one another. On the
other hand, there is no edge between any two selected
nodes in Fig. 1c, thus they can be dissimilar to each other.
As a result, the selected nodes in Fig. 1c are more diverse
than the selected nodes in Fig. 1b. This example indicates
that nodes with a larger expansion ratio result in better
diversity. Our diversified ranking measure is based on this
key intuition.

Diversified ranking measure. The most commonly used
criteria for combining relevance and diversity are the so-
called maximum marginal relevance (MMR) [13], which is a
linear combination of relevance and diversity and is widely
used in many document retrieval systems. With MMR, a
document that has a high marginal relevance means that it
is relevant to the query and is dissimilarity to the previously
selected documents. Similarly, in a graph, a node with a
high diversified rank should 1) have a high personalized
PageRank score, and 2) be dissimilar to the other selected
nodes. Our definition of expansion ratio can be deemed as a
diversity measure. And we aim at finding a subset S of

K nodes such that 1) the nodes in S have high personalized
PageRank scores and 2) the expansion ratio of jNðSÞj=n is
maximum. Formally, our goal is to maximize the following
diversified ranking measure:

F ðSÞ ¼ ð1� �Þ
X

u2S
wu þ �

jNðSÞj
n

; ð2Þ

where wu denotes the personalized PageRank score of node
u, and � 2 ½0; 1� is a parameter that is used to tradeoff
relevance and diversity. The first term in (2) is the sum of
the personalized PageRank scores over the ranking results,
which reflects the relevance of the ranking results. The
second term is the expansion ratio of the ranking results. As
discussed, a better expansion ratio implies better diversity.
Hence, (2) captures both relevance and diversity.

Note that F ðSÞ does not consider the ordering of the
top-K ranking list. This is because our definition is based
on a mild assumption that the users in a real retrieval
system generally focus on all the top-K results. This
assumption is typically reasonable in many practical
applications [5], [6], [7]. However, in Section 3.3, we will
show that our proposed algorithm still yields an ordering
results based on both relevance and diversity score of
the node.

To summarize, our problem of finding top-K diversified
ranking on graph is formalized as follows:

arg max
S�V

F ðSÞ

s:t: jSj ¼ K:
ð3Þ

3 DIVERSIFIED RANKING ALGORITHM

As discussed, our diversified ranking problem is to
maximize the proposed diversified ranking measure subject
to a cardinality constraint (see (3)). The following theorem
shows that the problem formulated in (3) is NP-hard in
general graphs.

Theorem 3.1. For a general graph G ¼ ðV ;EÞ, the optimization
problem in (3) is NP-hard.

Proof Sketch. We consider a special case of our problem
defined in (3) and show it is NP-hard. Let � ¼ 1, then the
problem is equal to maximize jNðSÞj subject to jSj ¼ K.
This special problem is equivalent to the maximal
expansion problem defined in [14] which is known to
be NP-hard. As a consequence, our problem defined in
(3) is also NP-hard. tu

Given the hardness of our problem, there is no hope to
optimally solve the top-K diversified ranking problem on
general graphs in polynomial time unless P ¼ NP. Only on
trees, the diversified ranking problem (see (3)) can be solved
optimally in polynomial time by a dynamic programming
(DP) algorithm, which we describe in the following section.

3.1 Diversified Ranking on Trees

Although the diversified ranking problem on general
graphs is NP-hard, we show that it can be solved optimally
in polynomial time when the graph is a tree. Our
polynomial-time algorithm is based on DP. The basic idea
is described as follows.
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Fig. 1. Illustration of our idea: expansion ratio versus diversity. Red
square nodes denote the selected nodes and green nodes are the
expanded nodes (color online).



Consider a subtree whose root has x children, the
optimal way of finding K nodes from the subtree for the
diversified ranking list must follow one of two cases. In
the first case, we include the root of the subtree to the
ranking list and then recurse on the children with a budget
of K-1. In the second case, we do not add the root of the
subtree, and instead recurse on the children with a budget
of K. A naive implementation of this recursion needs to
partition x children into K (or K � 1) parts in all possible
ways. Obviously, this is extremely expensive if x� 2. To
overcome this, we construct a transformation that converts
the general tree to a binary tree without altering optimum.
The transformation is described as follows.

We start from the root of tree T , denoted by rootðT Þ.
Assume u is an internal node of T with children
u1; u2; . . . ; ux and x > 2. Then, we replace u by a binary
tree with depth at most log2 x and leaves u1; u2; . . . ; ux. In
particular, let u1 be left child of u. Add a new node z1 and
let it be the right child of u. Then, let the remainder children
of u be the children of z1. Repeat these steps until every
nodes have at most two children. We set the personalized
PageRank score of the newly added nodes to �1 and the
personalized PageRank score of u; u1; u2; . . . ; ux are the
same as before. This can ensure that the newly added nodes
will never be added into the top-K ranking list. Obviously,
the depth of the new tree (a binary tree) is at most a factor of
log2 dmax larger than the depth of the original tree. Here dmax

denotes the maximum out-degree of a node in the original
tree. Further, the size of the binary tree is at most twice the
size of the original tree. More importantly, it is not very
hard to verify that the optimal solution of (3) on the binary
tree is the same as the optimal solution on the original tree.
Similar constructions have been used for various applica-
tions [15], [16].

Based on this construction, we can assume the tree is
binary, and is denoted by T . For each node u in T , we
define a cost function w.r.t. the current solution S as
Cðu; SÞ ¼ ð1� �Þwu þ �jNðfugÞ �NðSÞj=n. Let F ðu; S; kÞ be
the optimal solution in the subtree rooted by u with budget
k, where the set S maintains the current solution. And let
lðuÞ (rðuÞ) denotes the left (right) child of node u. Then, the
recursive equation of the DP is given by

F ðu; S; kÞ ¼ maxf
maxki¼0fF ðlðuÞ; S; iÞ þ F ðrðuÞ; S; k� iÞg;
Cðu; SÞ þmaxk�1

i¼0 fF ðlðuÞ; S [ fug; iÞ
þ F ðrðuÞ; S [ fug; k� 1� iÞgg:

The first term of the recursive equation corresponds to do
not select u to be in S and the second term corresponds to
add u into S. We analyze the time complexity of the DP
algorithm as follows (here we use a budget of K). First,
building the binary tree takes Oðn log2 dmaxÞ time. Second,
we need to evaluate the recursion OðKÞ times for each node
in the binary tree. For each such evaluation, it takes OðKÞ
time. Notice that computing Cðu; SÞ can be done in constant
time in a binary tree. There are Oðn log2 dmaxÞÞ nodes in the
binary tree. Putting all it together, the time complexity of
the DP algorithm is OðK2n log2 dmaxÞÞ.

3.2 Submodularity

Since the diversified ranking problem on general graphs is

NP-hard, we resort to develop approximate algorithms for

solving it efficiently. Below, we prove that our proposed

diversified ranking measure (F ðSÞ) is a nondecreasing

submodular set function, which allows us to develop a

near-optimal greedy algorithm for maximizing it efficiently.

We give the definition of the nondecreasing submodular set

function [17] as follows.

Definition 3.1. Let V be a finite set, a real valued function fðSÞ
on the set of subsets of V , S, is called a nondecreasing

submodular set function, if the following conditions hold.

. Nondecreasing. For any subsets S and T of V such
that S � T � V , we have fðSÞ � fðT Þ.

. Submodularity. Let �jðSÞ ¼ fðS [ fjgÞ � fðSÞ be
the marginal gain. Then, for any subsets S and T of V
such that S � T � V and j 2 V nT , we have
�jðSÞ � �jðT Þ.

We prove that (2) is a nondecreasing submodular

function with F ð;Þ ¼ 0, where ; is an empty set. We state

the theorem as follows:

Theorem 3.2. The set function F ðSÞ defined in (2) is a

nondecreasing submodular function with F ð;Þ ¼ 0.

Proof. For 8S � T � V and j 2 V nT , let �jðSÞ ¼ F ðS [
fjgÞ � F ðSÞ, and �jðT Þ ¼ F ðT [ fjgÞ � F ðT Þ. Then, we

have

�jðT Þ ¼ ð1� �Þwj þ �
jNðT [ fjgÞj � jNðT Þj

n

¼ ð1� �Þwj þ �
jNðfjgÞ �NðT Þj

n

� 0:

ð4Þ

Note that the nondecreasing property of F ðSÞ can be

guaranteed by �jðT Þ � 0.

Similarly, we have �jðSÞ ¼ ð1� �Þwj þ � jNðfjgÞ�NðSÞjn �
0. By definition, we have F ð;Þ ¼ 0 and jNðfjgÞ �

NðSÞj � jNðfjgÞ �NðT Þj. Hence, we conclude �jðSÞ �
�jðT Þ � 0. This completes the proof. tu

3.3 The Greedy Algorithm

Because our diversified ranking measure exhibits submo-

dularity property, with the founding in [17], we develop an

efficient greedy algorithm with a 1� 1=e approximation

guarantee for our top-K diversified ranking problem.

Algorithm 1 outline our greedy algorithm.

Algorithm 1. The Greedy Algorithm

Input: Graph G ¼ ðV ;EÞ, K, damping factor �,

adjacency matrix A, teleport vector r,

and parameter �

Output: A set S with K nodes

1: Compute the personalized PageRank vector w;
2: Initialize the answer set S  ;;
3: For each node vi, initialize an indicator array Expan[i]

 0;

4: for iter = 1 to K do

5: max �1;
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6: maxIdx 0;
7: for each node vi 2 ðV � SÞ do

8: counter 0;

9: for each neighbor node (vj) of vi do

10: if Expan[j] = 0 then

11: counter counterþ 1;

12: if ðð1� �Þwi þ �� counter=jV jÞ > max then

13: max ð1� �Þwi þ �� counter=jV j;
14: maxIdx i;
15: S  S [ fvmaxIdxg;
16: for each neighbor node (vj) of vmaxIdx do

17: Expan[j]  1;

18: return S;

In Algorithm 1, the algorithm first computes the
personalized PageRank vector as the initial ranking (line 1),
which measures the relevance of the nodes. Then, in each
iteration, the algorithm chooses a node u with the
maximum marginal gain �uðSÞ ¼ ð1� �Þwu þ �

n jNðfugÞ �
NðSÞj (lines 7-15), and adds it into the answer set S. To get
the top-K ranking list, this procedure will repeat K times
(lines 4-17). The algorithm will produce an ordering ranking
list according to �uðSÞ. Since �uðSÞ satisfies the nondecreas-
ing properties, Algorithm 1 will output a reasonable
ranking such that the node with a high ranking score will
appear in the top ranking list.

Theoretically, the following theorem shows that Algo-
rithm 1 obtains a near-optimal solution.

Theorem 3.3. Algorithm 1 is a 1� 1=e approximation algorithm
for the top-K diversified ranking problem (see (3)).

Proof Sketch. This can be proved by a similar argument
that has been used to prove the approximation factor of
the greedy algorithm for submodular set function
maximization problem [17]. tu

It is worth mentioning that the 1� 1=e approximation
factor is tight [18]. In other words, there are no other
polynomial-time algorithms that can achieve a more tight
approximation factor unless P ¼ NP. Below, we analyze the
time and space complexity of Algorithm 1.

Complexity analysis of the greedy algorithm. The time
complexity of Algorithm 1 is OðKjEjÞ. Specifically, in line 1,
Algorithm 1 takes OðjEjÞ time to compute the personalized
PageRank vector. The time complexity from line 4 to line 17
is OðKjEjÞ. This is because the algorithm needs to visit all
the nodes and their corresponding neighbors, and the total
number of nodes visiting by the algorithm equals to 2jEj in
the worse case. Moreover, we can use the so-called CELF
framework to accelerate Algorithm 1, which will result in
several times speedup [19]. For the space complexity,
Algorithm 1 needs to store the input graph G, the
personalized PageRank vector w, the answer set S, and an
indicator array, which lead to OðjV j þ jEjÞ in total. Put it
all together, the algorithm has linear time and space
complexity w.r.t. the graph size, and thus it can be scalable
to large-scale graphs.

3.4 Connection to Dominating Set Problem

The proposed top-K diversified ranking problem (see (3)) is
well connected to the dominating set problem in graph

theory [20]. The minimum dominating set problem in graph
theory aims to find the minimum number of nodes whose
expanded set can cover the whole graph. In other words,
the nodes in the minimum dominating set can dominate the
other nodes of the graph. The domination number (DN) of a
graph is the cardinality of the minimum dominating set. It
is well known that the minimum dominating set problem is
NP-hard. There is an efficient greedy algorithm with 1þ
lnðjV jÞ approximation factor to compute the DN and the
dominating set of a graph [20]. Specifically, the greedy
algorithm chooses a node with the maximal marginal gain
(�uðSÞ ¼ jNuðS [ fugÞj � jNuðSÞj) at a time, and it termi-
nates when the expanded set of the selected nodes cover the
whole graph. Note that the minimum dominating set
problem only considers the expansion of the nodes and
ignore the relevance of the nodes, thus cannot be directly
applied to our problem. Moreover, our top-K diversified
ranking problem aims to find the K nodes such that they are
relevant to the query and simultaneously dissimilar to one
another, and it is not to find the minimum number of nodes
such that their expanded set can cover the whole graph.

In the case that K exceeds the dominance number (DN)
of the graph, Algorithm 1 will choose nodes in terms of
their personalized PageRank scores. However, in many real
graphs, K is significantly smaller than the DN of the graph.
We will address this point in our experimental studies in
Section 5.

4 GENERALIZED DIVERSIFIED RANKING

In this section, we first propose a generalized diversified
ranking measure, and design an efficient greedy algorithm
for optimize it accurately. Then, we discuss other potential
variants of our diversified ranking measures.

4.1 Generalized Diversified Ranking Measure

The proposed diversified ranking measure (F ðSÞ) in
Definition 2.1, only considers the immediate neighborhood
information of S. Naturally, we can generalize the diversi-
fied ranking measure F ðSÞ by taking the k-step nearest
neighbors into account.1 We call such a measure a general-
ized diversified ranking measure and denote it by FkðSÞ. In
the following, we first give the definitions of k-step
expanded set and k-step expansion.

Definition 4.1. Let S be a set of nodes. The k-step expanded set
of S is denoted by NkðSÞ such that NkðSÞ ¼ S [ fv 2
ðV � SÞj 9u 2 S; dðu; vÞ � kg, where dðu; vÞ denotes the
length of the shortest path from u to v. The k-step expansion
of S is the cardinality of the k-step expanded set denoted as
jNkðSÞj. And the k-step expansion ratio is defined as
�k ¼ jNkðSÞj=n.

Based on the k-step expansion, we define the generalized
diversified ranking measure FkðSÞ as follows:

FkðSÞ ¼ ð1� �Þ
X

u2S
wu þ �

jNkðSÞj
n

: ð5Þ
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Obviously, F ðSÞ is a special case of FkðSÞ when k ¼ 1. Like
F ðSÞ, FkðSÞ is also a nondecreasing submodular function.
We give a theorem as follows: The proof is similar to the
proof of Theorem 3.2, thus we omit it for brevity.

Theorem 4.1. The set function FkðSÞ defined in (5) is a
nondecreasing submodular function with Fkð;Þ ¼ 0, where ;
denotes an empty set.

Likewise, the problem of maximizing the set function
FkðSÞ subject to a cardinality constraint is NP-hard.
However, based on the submodularity property of FkðSÞ,
we can develop a greedy algorithm to optimize it
accurately. Now, the problem is that the greedy algorithm
needs to find a node with the maximum marginal gain
�uðSÞ ¼ ð1� �Þwu þ �

n jNkðfugÞ �NkðSÞj in each iteration.
Unlike Algorithm 1, the marginal gain �uðSÞ cannot be
calculated in linear time complexity when k > 1. A naive
implementation of maximizing FkðSÞ is described as
follows: First, we construct a new graph such that any
two nodes u and v of the new graph have an edge ðu; vÞ if u
can reach v in k (k > 1) hops in the original graph. Then,
we perform Algorithm 1 on the new graph. The construc-
tion of the new graph can be implemented by Floyd
algorithm [21], resulting in OðjV j3Þ time complexity. And
performing Algorithm 1 on the new graph will take
OðKjEj0Þ time complexity, here jEj0 denotes the number
of edges in the new graph. Hence, the time complexity of
this naive algorithm is OðjV j3Þ, which is clearly not
scalable. In the following, we develop a randomized
greedy algorithm with linear time complexity using the
Flajolet-Martin (FM) sketch [22].

4.2 The Randomized Greedy Algorithm

Recall that the major time-consuming step for optimizing
the generalized diversified ranking measure (see (5)) is to
evaluate the marginal gain (�uðSÞ ¼ ð1� �Þwu þ �

n jNkðS [
fugÞ �NkðSÞj). Inspired by the idea of approximate
neighbor function [23], we propose a randomized greedy
algorithm for the generalized diversified ranking problem
using the FM sketch. The FM sketch is a probabilistic
counting structure, which can be used to estimate the
number of distinct elements (cardinality) in a multiset [22].
Assume the cardinality of a multiset A is C, then the FM
sketch only uses logC þ t bits for estimating C in high
accuracy, where t is a small constant. More specifically, the
FM sketch is a bitmap with size s ¼ logC þ t. There is a
hash function h : A! f1; . . . ; sg, which maps an element a
in A to a bit i ¼ f1; . . . ; sg in the bitmap with probability
PrðhðaÞ ¼ iÞ ¼ 1=ð2iþ1Þ. Initially, all bits in the bitmap is set
to 0. Then, each element a 2 A is inserted into the bitmap by
setting the corresponding hðaÞth bit to 1. Finally, an
asymptotically unbiased estimation of the cardinality C
can be obtained by 2c=0:77351, where c denotes the position
of the least significant zero bit in the bitmap. We can use
multiple hash functions to boost the estimating accuracy.
For the sake of brevity, we only consider one hash function
to illustrate the algorithm. In addition, an important
property of the FM sketch is that it can be easily applied
to estimate the cardinality of the union of two multisets if
these two multisets come from the same domain. In

particular, we can construct an FM sketch with the same
size for each multiset. To estimate the cardinality of the
union of two multisets, we only need to do a bitwise-OR
between the two FM sketches, and then estimate the
cardinality based on the resulting FM sketch.

It is worth mentioning that there also exist many other
probabilistic counting structures, such as Loglog sketch [24]
and Hyper Loglog sketch [25], but the union of these
sketches cannot be easily implemented by bitwise-OR.
Therefore, in our problem, we apply the FM sketch to
estimate the size of the k-step expansion set, i.e., jNkðSÞj.
The main idea of our algorithm is that we construct an FM
sketch to estimate the k-step expansion (jNkðfvgÞj) of each
node (v). To estimate the k-step expansion of a set S
(jNkðSÞj), we only need to do jSj � 1 times bitwise-OR over
all the FM sketches of the nodes in S. We depict our
algorithm in Algorithm 2. First, the algorithm calculates the
personalized PageRank vector w (line 1). Second, the
algorithm builds jV j FM sketches for all nodes of the graph
(lines 2-11). Here, we make use of the idea of the
approximation neighbor function [23]. Specifically, the idea
is based on the observation that the k-step expanded set of a
node vi is equivalent to the union of all the (k-1)-step
expanded sets of the immediate neighbors of vi. More
formally, we have

NkðfvigÞ ¼
[

ðvi;vjÞ2E
Nk�1ðfvjgÞ: ð6Þ

Based on this observation, we build an FM sketch for each
node vi in a recursive manner (lines 7-11). Note that we
use the bitwise-OR over the FM sketches for implementing
the set union operation in (6) (line 11). Finally, Algorithm 2
greedily selects K nodes according to their approximate
marginal gain (lines 12-30). In particular, we let S be the
answer set, NBP be the FM sketch representing the
expanded set of the answer set S (NkðSÞ), c be the k-step
expansion of S (jNkðSÞj), and OBP be a temporary
FM sketch representing the expanded set of S [ fvig, i.e.,
NkðS [ fvigÞ. Initially, Algorithm 2 sets S to an empty set
(line 12), NBP and OBP to 0 (line 13), and c ¼ 0 (line 14).
Then, Algorithm 2 iteratively selects K nodes with the
maximal approximate marginal gain (lines 15-29). At each
iteration, the algorithm chooses one node from V � S
(lines 18-25). More specifically, for each node vi 2 ðV � SÞ,
Algorithm 2 first estimates jNkðS [ fvigÞj using the FM
sketch OBP (lines 19-21). Then, Algorithm 2 calculates the
approximate marginal gain of node vi (�iðSÞ ¼ ð1� �Þwi þ
�
n jNkðS [ fvigÞ �NkðSÞj) and records the node with the
maximal approximate marginal gain (lines 22-25). Finally,
Algorithm 2 adds the node with maximal approximate
marginal gain into the answer set (lines 26-27) and re-
estimates jNkðSÞj by the FM sketch NBP (lines 28-29).

Algorithm 2. The Randomized Greedy Algorithm

Input: Graph G ¼ ðV ;EÞ, K, damping factor �,
adjacency matrix A, teleport vector r,

parameter k of the k-step expansion,

parameter �

Output: A set S with K nodes

1: Compute the personalized PageRank vector w;

2: Let h : fv1; . . . ; vng ! f1; . . . ; sg be the hash function
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that maps the nodes to a position of the BITMAP, here s
is the size of the BITMAP ;

3: for each node vi 2 V do

4: Initialize a BITMAP FM[i]  0;

5: Set the hðviÞ-bit of FM[i] to 1;

6: Initialize a temporary BITMAP TFM[i]  0;

7: for iter = 1 : k do

8: for each node vi 2 V do

9: TFM[i]  FM[i];
10: for each edge ðvi; vjÞ 2 E do

11: FM[i] = (FM[i]) BITWISE-OR (TFM[j]);

12: Initialize the answer set S  ;;
13: Initialize two BITMAPs NBP  0, OBP  0;

14: c 0;

15: for iter = 1 to K do

16: max �1;

17: maxIdx 0;
18: for each node vi 2 ðV � SÞ do

19: OBP  (NBP) BITWISE-OR (FM[i]);

20: Let t be the position of the right most 0 bit in the

BITMAP OBP;

21: counter 2t=0:77351;

22: counter counter� c;
23: if ð1� �Þwi þ �� counter=jV j > max then

24: max ð1� �Þwi þ �� counter=jV j;
25: maxIdx i;

26: S  S [ fvmaxIdxg;
27: NBP  (NBP) BITWISE-OR (FM[maxIdx]);

28: Let t be the position of the right most 0 bit in the

BITMAP NBP;

29: c 2t=0:77351;

30: return S

Theoretically, Algorithm 2 achieves 1� 1=e� � approx-
imation guarantee with high probability for the generalized
diversified ranking problem, because the FM sketch
approximates the k-step expansion of set S within an
� error bound in high probability [22]. In our experiments,
we will show that the performance of Algorithm 2 is
desirable. In the following, we analyze the time and space
complexity of Algorithm 2.
Complexity analysis of the randomized greedy algorithm. The

time complexity of Algorithm 2 is OðkjEj þKjV jÞ. Specifi-
cally, in line 1, Algorithm 2 computes the personalized
PageRank vector which consumes OðjEjÞ time complexity.
In lines 2-11, Algorithm 2 needs to take OðkðjEj þ jV jÞÞ time
to sketch the k-step expanded set for all nodes. In lines 12-
29, the algorithm takes OðKjV jÞ time to find the answer set.
Note that the bitwise-OR can be done in near constant time
complexity [23]. Thus, the time complexity of Algorithm 2 is
OðkjEj þKjV jÞ. For the space complexity, like Algorithm 1,
Algorithm 2 needs to store the graph G and the persona-
lized PageRank vector w, which consumes OðjV j þ jEjÞ. In
addition, Algorithm 2 needs to maintain OðjV jÞ FM
sketches, which takes OðjV j log jV jÞ bits. As a result, the
space complexity of Algorithm 2 is OðjV j log jV j þ jEjÞ.
Notice that the space complexity of Algorithm 2 is
approximately OðjEjÞ, as OðjV j log jV jÞ can be dominated
by OðjEjÞ in most graphs. Putting it all together, we
conclude that the time and space complexity of Algorithm 2

is linear w.r.t. the graph size, thereby it can be scalable to
large graphs.

4.3 Minimum Relevance Diversified Measures

Besides MMR, there also exist other diversification criter-
ions [26], [27]. Here, we discuss some potential variants of
the proposed diversified measures based on the minimum
relevance criterion [26], where the worse case relevance will
be maximized. The minimum relevance diversified mea-
sures are given as follows:

JðSÞ ¼ ð1� �Þmin
u2S

wu þ �
jNðSÞj
n

; ð7Þ

and

JkðSÞ ¼ ð1� �Þmin
u2S

wu þ �
jNkðSÞj
n

: ð8Þ

Unlike F ðSÞ and FkðSÞ, the minimum relevance diversi-
fied measures defined above are not submodular. Thus, we
cannot easily design an efficient greedy algorithm with an
approximation guarantee. In effect, it is easy to show that
the first term of set function JðSÞ or JkðSÞ is supermodular2

[28] and the second term is submodular. Thus, the set
function JðSÞ or JkðSÞ is a sum over a submodular and a
supermodular function, which could be approximately
solved by a supermodular-submodular procedure [28].
But unfortunately, both the convergence properties and
the approximation factor of the supermodular-submodular
procedure are not known now. Developing efficient algo-
rithm with performance guarantee to maximize JðSÞ and
JkðSÞ is an interesting future work.

5 EXPERIMENTS

In this section, we evaluate the effectiveness and
efficiency of the proposed approaches. Below, we first
describe the experimental setup, and then report our
experimental results.

5.1 Experimental Setup

Data sets. We conduct our experiments on five real
networks, three collaboration networks, one citation net-
work, and one social network.

. Collaboration networks. We select three collaboration
networks from Stanford network data sets [29]:
namely GrQc, HepTh, and CondMat. GrQc, HepTh,
and CondMat are collaboration networks collected
from the e-print arXiv archive and cover all the
coauthorships between authors on general relativity
and quantum cosmology, high energy physics-
theory, and condense matter physics, respectively.
Notice that all the collaboration networks are
undirected graph.

. Citation network. We choose a citation network,
namely citeHepTh, from Stanford network data sets
[29]. The citeHepTh is a citation network of papers
on high energy physics theory, which is originally
collected from e-print arXiv archive. The citation
network is a directed graph.
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. The social network. Flickr is a popular photo shared
website. The users in Flickr can upload photos, make
friends as well as join in various interest groups. In
our experiments, we employ the Flickr data set from
ASU social computing data repository [30]. The data
set contains an undirected social network with
80,513 nodes and 5,899,882 edges and 195 different
groups that the users joined.

The detailed statistical information of our data sets are
presented in Table 1. From Table 1, we can observe that the
approximate DN of our data sets, which is calculated by a
greedy algorithm given in [20], are greater than 1,000.
However, in many practical retrieval systems, users are
often interested in the top-K results, where K is a small
constant (e.g., K ¼ 30) and it is typically smaller than the
approximate DN.

Evaluation metrics. In the literature, there are no well-
accepted measures for diversity in ranking on graphs [31].
In our experiments, we employ two metrics to measure the
diversity. One is proposed in [6], which makes use of the
density of the induced subgraph by the top-K ranking
nodes. The density of a graph is a ratio that is equal to the
number of edges existing in the graph divided by the
maximum possible number of edges in the graph. Intui-
tively, the density inversely measures the diversity of the
top-K ranking nodes. The second metric is the expansion
ratio which is defined in Definition 2.1. The rationale is that
the larger expansion ratio of the top-K ranking nodes
indicates the better diversity. For comparing the relevance
with different algorithms, we use the relevance metric given
in [8]. Specifically, the relevance Rel is calculated as

Rel ¼
P

vi2S wiP
vi2 ~S wi

; ð9Þ

where S denotes the top-K diversified ranking list by the
diversified ranking algorithm, ~S denotes the top-K ranking
list by the personalized PageRank algorithm. Note that Rel
defined in (9) falls into a interval [0, 1], as the personalized
PageRank algorithm always gives the K most relevant
nodes. By definition, the higher Rel implies better relevant.

Baselines. We compare our proposed methods with six
baselines under diversity and relevance metrics defined
above. For our methods, we mainly focus on k-step, for
k ¼ 1 and k ¼ 2, denoted by Expansion-1 (Ep1) and
Expansion-2 (Ep2), respectively. Ep1 and Ep2 are tested
using Algorithms 1 and 2, respectively. We will study the
effectiveness of the parameter k in the following section. For
other k-step expansions (k > 2), the performance is not
significantly better than the 1-step and 2-step expansions.
The six baselines are as follows:

. Personalized PageRank (PPR). PPR is a natural
competitor of our algorithm, which can be served
as a baseline for evaluating relevance.

. Grasshopper (Gra). Gra is a diversified ranking
algorithm that leverages an absorbing random walk
to achieve diversity [5]. Gra has been successfully
used in diversified document summarization and
ranking actors in social networks.

. Manifold ranking with stop points (MRSP). MRSP is
proposed in [7], which is very similar to the
Grasshopper algorithm. It can also be used on
graphs.

. DivRank (DivR). DivR makes use of the stationary
distribution of a vertex reinforced random walk to
rank nodes [6]. It has been applied to diversify
ranking in information networks. There are two
various implementation of DivR, namely pointwise
DivR and cumulative DivR respectively. As reported
in [6], the two algorithms achieve the similar ranking
performance. Hence, we use the pointwise DivR in
our experiments.

. Dragon (Dra). Dra is a scalable diversified ranking
algorithm [8]. Dra aims to optimize a predefined
diversified ranking measure. Unlike our diversified
ranking measure, the measure used in Dra lacks
topological explanation, thereby it is not intuitive
and reasonable to some extent.

. Diversified ranking via resistive graph centers (RGC).
RGC [10] aims to learn a diversified teleport vector
to achieve diversity in ranking. However, the time
complexity of RGC is cubic, thereby it cannot scale to
large graphs.

We do not make comparison with the MMR algorithm [13]
because [6] has shown that DivR outperforms MMR over
graph data sets.

Parameter settings. In our proposed algorithms (Algo-
rithms 1 and 2), there are two common parameters: the
damping factor � for computing the personalized PageR-
ank, and the parameter � used to tradeoff relevance and
diversity. We set � ¼ 0:85 as it is widely used in web search.
For the parameter �, we set it to 0.5 because it is not very
sensitive in our experiments. We will show the effect of � in
the following section. Additionally, for Algorithm 2, we use
50 hashing functions to implement the FM sketch. For all
parameters of the baseline methods, we use the same
settings as given in the original papers respectively.

Experimental environment. All the experiments are con-
ducted on a Window Server 2007 with 4xDual-Core Intel
Xeon 2.66-GHz CPU, and 4G memory. All algorithms are
implemented by MATLAB (R2011a).

5.2 Experimental Results

In all of our experiments, we randomly generate 100 queries,
and the results are the average over all the queries. We give
the detail results as follows.

Results on collaboration networks. In this experiment, we
compare Ep1 and Ep2 with six baselines over three collabora-
tion networks. Figs. 2a, 2b, and 2c depict our results on GrQc,
HepTh, and CondMat data sets, respectively.

From Fig. 2a, we can observe that DivR and Gra achieve
near-optimal relevance, followed by Ep1, Dra, Ep2, MRSP,
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and RGC. Note that the relevance of both Ep1 and Ep2 are
more than 0.8 over different K values, which indicates that
our algorithms can obtain relevant results w.r.t. the queries.
We can clearly see that the relevance of RGC is extremely

low, which is less than 0.3 over different K values. This
result implies that RGC may produce irrelevant and
meaningless results. For the diversity, we find that Ep2 is
the winner under the expansion ratio metric among all the
algorithms. Besides, Ep1 also outperforms other baselines

under the expansion ratio metric. The expansion ratio by
DivR, Gra, and MRSP are slightly worse than PPR, which
suggests that DivR, Gra, and MRSP do not perform well to
enhance diversity in collaboration networks under the
expansion ratio metric. Under the density metric, RGC
outperforms the competitors (recall that smaller density

implies better diversity). Ep1, Ep2, and MRSP achieve
comparable density, and they are slightly worse than Dra.
DivR and Gra also do not perform well under the density
metric. Similar results can be observed in HepTh and
CondMat data sets.

Based on the observations, on the collaboration net-

works, we conclude that DivR, Gra, and MRSP do not
perform well regarding diversity. The reason would be that
these algorithms lack a clear explanation for diversity. RGC

exhibits excellent performance for improving diversity, but

it significantly sacrifices the performance of relevance. Our
Ep1 and Ep2 as well as Dra achieve a good tradeoff between

the relevance and the diversity. The reason is that our
algorithms and Dra have a clear objective to optimize the

predefined diversified ranking measures. Moreover, our
algorithms exhibit better relevance and better expansion

ratio than Dra.
Results on citation network. Unlike the collaboration

network, the citation network is a directed graph. Here,
we test MRSP by ignoring the direction of the edges as

MRSP cannot be directly applied to the directed graphs.
Fig. 3 describes our results.

From Fig. 3, we find that Gra outperforms other

algorithms by relevance metric. RGC shows the lowest
relevance, which suggests that RGC may generate comple-

tely irrelevant ranking results. For other baselines except

PPR, they show comparable relevance. For our approaches,
Ep1 shows better relevance than Ep2. For the diversity, Ep2

outperforms the other algorithms under the expansion ratio
metric. The expansion ratio by Ep1 is better than the

expansion ratio by the six baseline algorithms. However,
under the density metric, we can observe that RGC gets the

best performance. Our approaches, MRSP, and Dra achieve
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comparable density. Also, for our approaches, Ep2 is
slightly better than Ep1 under the density metric. In
general, the results on the citation networks consist with
the results on the collaboration networks.

Results on Flickr social network. Here, we test our
proposed algorithms in Flickr social network. Our goal is
to find the top-K users who not only have higher
personalized PageRank scores relative to the queries, but
also cover as many interest groups as possible. Hence, in
addition to the diversity measures described in Section 5.1,
we introduce the “group coverage” as a new diversity
measure in this experiment. Intuitively, the more groups
that are covered by the top-K ranking list the better
diversity it has. In this experiment, we only compare our
Ep1 and Ep2 with PPR and Dra. The reason is of twofold.
First, the other baselines either cannot get answers in
12 hours or cannot be conducted due to their memory
requirements. Second, as observed in our previous experi-
ments, Dra outperforms the other baselines. Our results are
shown in Fig. 4. From Fig. 4, we can observe that both Ep1
and Ep2 significantly outperform Dra based on the
relevance, the expansion ratio, and the group coverage
metrics. More specifically, under the relevance and expan-
sion ratio metrics, Ep1 is clearly the best performer among
all the diversified ranking algorithms. Also, notice that the
relevance by Dra decreases as the K increases. When
K ¼ 100, Dra exhibits low relevance (less than 0.4). Instead,
our algorithms show quite robust relevance w.r.t. different
K values. Furthermore, the relevance of our algorithms are

greater than 0.8 over various K values. Under the density

metric, Dra slightly outperforms Ep1 and Ep2. However,
under the group coverage metric, Ep2 achieves the best
performance, followed by the Ep1, Dra, and then PPR.

From the practical point of view, the performance of our
algorithms are better than the performance of Dra, because
the ranking results by our algorithms cover more interest

groups than that of Dra. The reason can be that our
diversified ranking measures capture the topological prop-
erties of the graph, which is more intuitive and reasonable

than the measure used in Dra.
To summarize, over all of our experiments, we make the

following observations:

1. DivR and Gra achieve near-optimal relevance but
their performance of improving diversity is quite
low.

2. RGC gets near-optimal diversity under the density
metric, but it exhibits extremely low relevance.

3. The performance of MRSP is very low under the
expansion ratio metric (even worse than PPR).

4. Ep1, Ep2, and Dra show a good balance between the
relevance and the diversity. Moreover, our Ep1 and
Ep2 exhibit better relevance and diversity than Dra
over most data sets used.

Precision comparison. To further evaluate the effectiveness
of our algorithms, we compare the precision of our
approaches with the state-of-the-art Dra. Since there is no

ground truth in graph-type data sets, we use the persona-
lized PageRank as the ground-truth rank which is also used

in [8]. The precision is defined by the following formula:

Pre ¼ jS \ ~Sj=j ~Sj; ð10Þ

where S and ~S is defined in (9). Fig. 5 depicts our results in
Condmat, citeHepTh, and Flickr data sets. Similar results

can be observed in other data sets. From Fig. 5, we can
clearly see that both Ep1 and Ep2 consistently outperform

2142 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 4. Comparison of various diversified ranking algorithms in Flickr
social network. Fig. 5. Comparison of precision of Ep1, Ep2, and Dra.

Fig. 3. Comparison of various diversified ranking algorithms in citeHepTh data set.



Dra in Condmat and Flickr data sets over different K. In
citeHepTh data set, we can observe that all three algorithms
generate comparable rank, and the performance of Ep1 is
slightly better than Dra. The performance of Dra is not very
stable over our data sets. In citeHepTh data set, the
performance of Dra is comparable to our algorithms, but
in Flickr data set, Dra does not perform well (precision is
lower than 10 given K = 100). This result implies that Dra
produces less meaningful rank in Flickr data set. In contrast
to Dra, the performance of our algorithms is very stable
over different data sets. In this sense, we can conclude that
our algorithms are better than Dra.

Time comparison. We compare the average query proces-
sing time of various diversified ranking algorithms over
five network data sets. We take the average on the query
processing time of the ranking algorithms over different
K values and different queries. Table 2 shows our results.
From Table 2, we can observe that PPR is the most efficient
algorithm. Ep1 and Dra achieve competitive efficiency with
PPR. Ep2 is slightly worse than Ep1, Dra, and PPR, but is
still very efficient due to the linear time and space
complexity. For the other baselines, we can clearly see that
their time requirements are very high. More worse, on the
Flickr data set, RGC, Gra, and MRSP cannot get the top-K
ranking results in 12 hours, and DivR cannot be conducted
due to its memory requirement. This results confirm our
time and space complexity analysis in the previous sections.

Effect of parameter �. We study the effect of the parameter
� in Ep1 and Ep2, i.e., � in (2) and (5), which is leveraged to

tradeoff the relevance and the diversity. Here, we study the
top 30 ranking results (K ¼ 30) under different � values in
Flickr data set. Similar results can be observed in other data
sets and for other K. We use the results of PPR and Dra as
the baselines. The reasons are 1) the ranking result by PPR
is a natural measure for relevance, and 2) Dra outperforms
other baselines. The results are depicted in Fig. 6. As can be
seen in Fig. 6a, the relevance by Ep2 decreases as �
increases, while the relevance by Ep1 is robust w.r.t. �. For
the relevance, both Ep1 and Ep2 outperform Dra. Accord-
ing to Figs. 6b, 6c, and 6d, we can observe that the diversity
by Ep1, which is measured by the expansion ratio, density,
and group coverage, generally increases as � increases.
This is because a larger � means more weights are
assigned, to improve the diversity in our diversified
measure (see (2)). We also find that Ep1 is very robust
w.r.t. �. In addition, we can clearly see that both Ep1 and
Ep2 outperform Dra by the expansion ratio and group
coverage measures, while by density measure, our algo-
rithms are slightly worse than Dra.

Scalability testing and memory consumption. To study the
scalability of Ep1 and Ep2, we generate two sets of synthetic
graphs G with nodes ranging from 100,000 to 900,000 and
edges from 800,000 to 4,000,000 using the Erdos-Renyi
random graph model, respectively. Here, we set K ¼ 30,
and similar results can be observed for other K. Our results
are described in Fig. 7. From Fig. 7, we can clearly see that
both Ep1 and Ep2 scale linearly w.r.t. both the numbers of
nodes (left part of Fig. 7) and edges (right part of Fig. 7).
Therefore, our Ep1 and Ep2 can be used for very large
graphs. The results confirm our time complexity analysis in
the previous sections.

To validate the space complexity of our algorithms, in
Fig. 8, we show the memory consumption of our algorithms
in the same set of synthetic graphs. Specifically, in the left
part of Fig. 8, we can see that the memory consumption of
both Ep1 and Ep2 increase as the number of nodes
increases. The curves of both Ep1 and Ep2 become a line
when the number of nodes is larger than 500,000. Similarly,
from the right part of Fig. 8, we can observe that the
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memory consumption of both Ep1 and Ep2 increase as the
number of edges increases, and the curves of Ep1 and Ep2
tend to be a line when the number of edges is larger than
2,400,000. These results confirm the linear space complexity
of our algorithms.

Performance of Algorithm 2. It is worth noting that
Algorithm 2 gives an approximate answer instead of the
exact answer given by Algorithm 1. We evaluate the
approximation performance of Algorithm 2. To this end,
first, we use Algorithm 2 to test the 1-step expansion (set
k ¼ 1 in Algorithm 2), and we refer to it as Approx. Ep1. We
compare the performance of Approx. Ep1 with Ep1, which
is implemented by Algorithm 1. Fig. 9 shows our results in
Flickr data set. Similar results can be observed in other data
sets. From Fig. 9a, we can find that Approx. Ep1 shows
better relevance than Ep1. However, from Figs. 9b, 9c, and
9d, Approx. Ep1 is slightly worse than Ep1 under the three
diversity metrics. Overall, Approx. Ep1 achieves compar-
able performance with Ep1. This results suggest that our
randomized greedy algorithm (Algorithm 2) can achieve a
good performance guarantee, which consists with our
analysis in Section 4.

Effect of parameter k. We investigate how the parameter k
affects the performance of the k-step expansion based
algorithms, which are implemented by Algorithm 2. Fig. 10
shows our results in Flickr data set, and the similar results
can be observed in other data sets. From Fig. 10, we can see
that the relevance and diversity are generally not sensitive
w.r.t. different k when k � 2. The 2-step expansion (k ¼ 2)
achieves the best expansion ratio and density, thereby in
our previous experiments we set k ¼ 2.

6 RELATED WORK

Diversified ranking on text data. Diversity has been recog-
nized as important criteria in information retrieval. There
are a large body of works on query or search results
diversification [13], [32], [33], [34], [35], [36], [37]. In
document retrieval, one of a well-known method is the
MMR proposed by Carbonell and Goldstein [13], which
achieves diversity by maximizing a linear combination
function that captures both dissimilarity among the results

and relevance w.r.t. the query. After Carbonell and
Goldstein’s work, many approaches addressing diversifica-
tion have been proposed in recent years. Zhai et al. [38]
propose a subtopic retrieval approach to results diversifi-
cation. Agrawal et al. [39] formulate the query results
diversification as a submodular function maximization
problem. Gollapudi and Sharma [26] present several
axioms for query results diversification. All the above
mentioned methods primarily address to documents data.
An excellent survey on query results diversification is
given in [27].

Submodular set function maximization. Our diversified
ranking problem is closely related to submodular set
function maximization problem, which is generally NP-
hard. However, there always exists a near-optimal greedy
algorithm for solving such problem [17]. There are many
applications that have been formulated as a submodular set
function maximization problem such as influence maximi-
zation problem in social networks [40], observation selec-
tion and sensor placement problem [41], [42], document
summarization problem [43], [37], as well as the set cover
problem [44]. In this paper, we formulate the diversified
ranking problem on graphs as the submodular set function
maximization problem.

Expansion on graphs. Our work is also related to the
expansion of a graph, which is a well known concept in
expander graph theory [12]. This concept recently is used
for sampling community structure [45] and facilitating
decentralized search in networks [14]. However, our
definition of expansion is different from the previous
work, and we leverage expansion to measure diversity of
the top-K ranking results.

7 CONCLUSIONS

In this paper, we present a study of finding top-K
diversified ranking on graphs. First, we propose a novel
diversified ranking measure, which captures both relevance
and diversity. Second, we prove the submodularity of this
measure and design an efficient greedy algorithm to
achieve near-optimal diversified ranking. The proposed
method has linear time and space complexity w.r.t. the size
of the graph, thus it can be scalable to large graphs. Third,
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Fig. 10. The effect of parameter k in k-step expansion-based algorithms.Fig. 9. Performance of the randomized greedy algorithm.



we present a generalized diversified ranking measures and

develop an efficient randomized greedy algorithm for

maximizing it accurately. Finally, extensive experiments

show the effectiveness, efficiency and scalability of the

proposed methods.
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